Cosmological constraints on the number of neutrino species

Jan Hamann

based on work in collaboration with: S. Hannestad, G. Raffelt, I. Tamborra and Y. Wong

> INFO 2011 Santa Fe

20 July 2011

Alexander von Humboldt Stiftung/Foundation

AARHUS UNIVERSITET

Setting the scene: hints for sterile neutrinos?

Observations at odds with standard 3-neutrino interpretation of global oscillation data

LSND anomaly

[Aguilar (2001)]

MiniBooNE antineutrino results

[Aguilar-Arevalo (2010)]

- Short-baseline reactor experiments (Bugey, ROVNO, Krasnoyarsk, ILL, Gösgen)
 - Recent re-evaluation of reactor fluxes

[Mention et al. (2011)]

Setting the scene: hints for sterile neutrinos?

Observations at odds with standard 3-neutrino interpretation of global oscillation data

LSND anomaly

[Aguilar (2001)]

MiniBooNE antineutrino results

[Aguilar-Arevalo (2010)]

- Short-baseline reactor experiments (Bugey, ROVNO, Krasnoyarsk, ILL, Gösgen)
 - Recent re-evaluation of reactor fluxes[Mention et al. (2011)]

Can possibly resolved with oscillations into sterile neutrinos with $\Delta m^2 \sim eV^2$

Setting the scene: hints for sterile neutrinos?

Results from reactor/global fit:

	$\Delta m^2_{41} [\mathrm{eV}^2]$	$ U_{e4} $	$\Delta m^2_{51} \; [\mathrm{eV}^2]$	$ U_{e5} $	$\chi^2/{ m dof}$
3+1	1.78	0.151			50.1/67
3+2	0.46	0.108	0.89	0.124	46.5/65

Table I: Best fit points for the 3+1 and 3+2 scenarios from reactor anti-neutrino data.

	Δm^2_{41}	$ U_{e4} $	$ U_{\mu 4} $	Δm^2_{51}	$ U_{e5} $	$ U_{\mu 5} $	δ/π	$\chi^2/{ m dof}$
3+2	0.47	0.128	0.165	0.87	0.138	0.148	1.64	110.1/130
1 + 3 + 1	0.47	0.129	0.154	0.87	0.142	0.163	0.35	106.1/130

Table II: Parameter values and χ^2 at the global best fit points for 3+2 and 1+3+1 oscillations (Δm^2 's in eV^2).

[Kopp, Maltoni, Schwetz (2011)]

What is the Universe made of?

Assuming the ΛCDM-model:

NASA's cosmic pie

today
$$(z = 0)$$

What is the Universe made of?

Assuming the ΛCDM-model:

NASA's cosmic pie

today (z = 0)

What is the Universe made of?

Assuming the ΛCDM-model:

NASA's cosmic pie (2)

at decoupling (z = 1100)

Radiation content of the Universe

- Photons: CMB
- ◆ Neutrinos: CvB
- Other light particle species?

How can we find them?

- Directly: via scattering
- Indirectly: via gravitational effects

Cosmic Microwave Background

Directly measured by COBE/FIRAS

[Mather et al. (1993)]

Blackbody spectrum with

$$T_{\gamma} = 2.725 \pm 0.001 \text{ K}$$

[Fixsen & Mather (2002)]

Cosmic Microwave Background

Also affects expansion rate through photon energy density:

$$ho_{\gamma} = rac{g_{\gamma}}{(2\pi)^3}\, \int \mathrm{d}^3 q \; q \, f_{\mathrm{BE}}(q) = rac{\pi^2}{15}\, T_{\gamma}^4 \, .$$

Cosmic Neutrino Background

Neutrinos decouple before e⁺e⁻-annihilation

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \simeq 1.95 \text{ K}$$

- extremely low energy
- no direct detection to date

Cosmic Neutrino Background

Neutrino energy density:

$$ho_{
u}^{
m act} = 3 \cdot rac{g_{
u}}{(2\pi)^3} \, \int {
m d}^3 q \; q \, f_{
u}(q) = N_{
m eff}^{
m act} \cdot rac{7\pi^2}{120} \, \left(rac{4}{11}
ight)^{4/3} T_{\gamma}^4$$

LEP: 2.984 ± 0.008

Large mixing ensures that different mass/flavour eigenstates typically share a common momentum distribution

[Dolgov et al. (2002), Wong (2002)]

Cosmic Neutrino Background

Neutrino energy density:

$$ho_{m
u}^{
m act} = 3 \cdot rac{g_{m
u}}{(2\pi)^3} \, \int {
m d}^3 q \; q \, f_{m
u}(q) = N_{
m eff}^{
m act} \cdot rac{7\pi^2}{120} \, \left(rac{4}{11}
ight)^{4/3} T_{m \gamma}^4 \, .$$

For $f_{
u}=f_{
m FD}$, one would have $N_{
m eff}^{
m act}=3$

 Small correction due to ν_es not being quite completely decoupled at e⁺e⁻-annihilation + QED correction

→ Standard Model expectation:

$$N_{
m eff}^{
m act}=3.046$$

[Mangano et al. (2005)]

Radiation content of the Universe

Other light stuff?

$$ho_X = N_X \cdot rac{7\pi^2}{120} \, \left(rac{4}{11}
ight)^{4/3} T_{\gamma}^4 \, .$$

Radiation content of the Universe

Other light stuff?

$$ho_X = N_X \cdot rac{7\pi^2}{120} \, \left(rac{4}{11}
ight)^{4/3} T_{\gamma}^4 \, .$$

Putting it all together:

$$ho_r =
ho_\gamma +
ho_
u^{
m act} +
ho_X \ = rac{\pi^2}{15} T_\gamma^4 \left[1 + (N_{
m eff}^{
m act} + N_X) \cdot rac{7}{8} \left(rac{4}{11}
ight)^{4/3}
ight] \ N_{
m eff}$$

A few remarks on $N_{ m eff}$

- is not a constant, in general
 - increase through light decay products of massive particle
 - decrease when particles go non-relativistic
 - (in fact, technically $N_{\rm eff} \le$ 1 today)
- $N_{\rm eff}$ can be < 3.046 at early times if neutrinos out of equilibrium; e.g., low reheating temperature:

[Ichikawa, Kawasaki, Takahashi (2005)]

Determining $N_{ m eff}$ from observation

Big Bang Nucleosynthesis

Primordial element abundances

Decoupling

- Cosmic Microwave Background anisotropies
- Large scale structure

Boltzmann equation

nuclear interaction rates ← ► expansion rate

neutrons and protons in equilibrium

neutrons start decaying

most surviving neutrons end up in ⁴He

Boltzmann equation

nuclear interaction rate → expansion rate

primordial element abundances as function of $(\omega_{\rm b}, f_{\nu_{\rm e}}, N_{\rm eff}, \ldots)$

 Assume standard BBN with 3 active neutrinos and N_s additional effective "sterile neutrino" species

Measure primordial abundances → infer N_s

E.g., Helium: increasing radiation density

- → higher expansion rate
- → n-p freeze-out at higher T
- \rightarrow n/p = exp[- Δ m/T]
- → greater Helium abundance

Measure primordial abundances → infer N_{eff}

Primordial abundances: Deuterium

- Measure absorption of quasar light in low-metallicity hydrogen clouds at high z
- Relatively "clean" probe
- Deuterium abundance not subject to strong evolution with redshift
- From seven measured objects:

$$\log [D/H]_p = -4.55 \pm 0.03$$

[Pettini et al. (2008)]

Primordial abundances: Helium

- Observe Hydrogen and Helium emission lines in H-II regions of metal-poor dwarf galaxies
- Astrophysical systematics
 - Interstellar reddening
 - Absorption lines in stellar continuum
 - Radiative transfer
 - Collisional corrections
- Helium production by Pop III stars → dY/dZ > 0

[Izotov, Thuan (2010)]

Primordial abundances: Helium

- Reliable treatment of systematics for seven "high-quality" systems
- Linear regression to zero metallicity, limited to positive slopes

$$Y_{\rm p} = 0.2573^{+0.0033}_{-0.0088}$$

[Aver, Olive, Skillman (2010)]

Calculating theoretical abundances

- Solve Boltzmann equations numerically (e.g., ParthENoPE)
- [Pisanti et al. (2008)]

- Theoretical uncertainties:
 - Nuclear rates
 negligible for Helium, 1.8% for Deuterium
 - → folded into likelihood function
 - Free neutron lifetime
 negligible for Deuterium, 0.6% for Helium

Free neutron lifetime

No universally agreed upon value:

$$au_{
m n}^{
m PDG} = 885.7 \pm 0.8 \;
m s$$

 \bullet $\tau_{\rm n}^{\rm S} = 878.5 \pm 0.8 \, {\rm s}$

$$au_{\rm p}^{\rm P} = 880.7 \pm 1.8 \; {\rm s}$$

[Particle Data Group (2010)]

[Serebrov et al. (2005)]

[Pichlmaier et al. (2010)]

- Averaging would not be reasonable
- Re-analysis of older measurements claims bias of roughly +6 s
 [Serebrov, Fomin (2010)]
- We consider the two extremal values until the matter is settled

BBN constraints: Deuterium only

including CMB+LSS prior on baryon density

[JH, Hannestad, Raffelt, Wong (in preparation)]

- N_s unconstrained from Deuterium alone
- Combination with baryon density prior gives upper limit

BBN constraints: Helium only

including CMB+LSS prior on baryon density

effect of going to higher neutron lifetime

- \rightarrow higher predicted Y_p
- → tighter bound on N_s

[JH, Hannestad, Raffelt, Wong (in preparation)]

Helium is a much better probe of N_s

BBN constraints: Deuterium + Helium

including CMB+LSS prior on baryon density

[JH, Hannestad, Raffelt, Wong (in preparation)]

- N_s < 1.26 (1.24) @95% credibility
- Best-fit at N_s = 0.86

BBN and sterile neutrinos

- 3+1 scenario slightly preferred over 3+0
- ◆ 3+2 ruled out at high significance ...

[JH, Hannestad, Raffelt, Wong (in preparation)]

BBN and sterile neutrinos

- 3+1 scenario slightly preferred over 3+0
- 3+2 ruled out at high significance ... unless:
 - Incomplete thermalisation
 - \rightarrow effective N_s is smaller than 2
 - Non-standard BBN?

Degenerate BBN

- Allow for a neutrino chemical potential ξ
- Assume all active species share the same ξ
- Two effects:
 - Additional radiation energy density

$$\Delta N_{ ext{eff}} = rac{45}{7} \left[2 \left(\xi/\pi
ight)^2 + \left(\xi/\pi
ight)^4
ight]$$

Change in initial equilibrium n/p ratio

$$n/p = \exp\left(-rac{\Delta m}{T} - \xi
ight)$$

BBN constraints: Degenerate BBN

including CMB+LSS prior on baryon density

[JH, Hannestad, Raffelt, Wong (in preparation)]

• ξ of order 0.1 could save 3+2 (and even 3+3!)

$N_{ m eff}$ and the CMB

CMB map

CMB angular power spectrum

[WMAP (2010)]

$N_{ m eff}$ and the CMB

Angular power spectrum is a function of O(10)
 cosmological parameters (e.g., ω_b, ω_{dm}, ω_v, Ω_{de}, N_{eff},...)

- Matter-radiation equality
- Sound horizon
- Anisotropic stress
- Damping tail

$$1+z_{
m eq}=rac{\Omega_{
m m}}{\Omega_{
m r}}\simeqrac{\Omega_{
m m}h^2}{\Omega_{\gamma}h^2}rac{1}{1+0.2271N_{
m eff}}$$

- Completely degenerate with matter density
- Larger $N_{
 m eff}$ ightarrow later equality ightarrow enhanced early integrated Sachs-Wolfe-effect ightarrow higher first peak

- Matter-radiation equality
- Sound horizon
- Anisotropic stress
- Damping tail

- Function of radiation, baryon and matter densities
- θ_s = Sound horizon/distance to last scattering surface determines positions of acoustic peaks

also depends on dark energy density

- Matter-radiation equality
- Sound horizon
- Anisotropic stress
- Damping tail

- Free streaming particles → anisotropic stress
- Dampens fluctuations during radiation domination
- Suppression of power at multipoles > 200

- Matter-radiation equality
- Sound horizon
- Anisotropic stress
- Damping tail

- Last scattering surface has finite thickness
 → exponential damping of fluctuations below damping scale
- For fixed peak positions, increasing N_{eff} enhances damping

Damping tail can help break degeneracies with other parameters

FIG. 1. Top panel: WMAP, ACBAR and ACT power spectrum measurements, and theoretical power spectra normalized at $\ell=200$ for $N_{\rm eff}$ varying from 2 to 5 with ρ_b , θ_s , and $z_{\rm EQ}$ held fixed.

[Millea et al. (2011)]

$N_{ m eff}$ from WMAP+LSS+...

- lower limit from WMAP alone (→ anisotropic stress)
- meaningful upper limit requires combination with other data sets sensitive to matter density and expansion rate ...
 [WMAP: Komatsu et al. (2008)]

$N_{ m eff}$ from CMB alone

... or measurement of the damping tail of the CMB angular power spectrum

CMB+X bounds on $N_{ m eff}$

- Precise numbers depend on cosmological model and data sets used
- Recent analysis: $N_{\rm eff}$ = 4.47 $^{+1.82}_{-1.74}$ CMB + SDSS-DR7-BAO + HST Λ CDM + neutrino mass + $N_{\rm eff}$

[JH, Hannestad, Lesgourgues, Rampf, Wong (2010)]

Sterile neutrino scenario

Two qualitatively different mass hierarchies:

[JH, Hannestad, Raffelt, Tamborra, Wong (2010)]

Sterile neutrino scenario

- 3+1, 3+2, 3+3 are fine ... as long as the steriles are light enough!
- Unfortunately, 1 eV
 appears to be
 somewhat too heavy
- Reminder: we assumed minimal extension of cosmological standard model (ΛCDM+N_{eff}+m_ν)

[JH, Hannestad, Raffelt, Tamborra, Wong (2010)]

Impact on cosmological model

 Assume laboratory hints for steriles are real, fix masses to best-fit values in 3+1/3+2

	$\Delta m^2_{41} \; [\mathrm{eV^2}]$	$ U_{e4} $	$\Delta m^2_{51} ~ [\mathrm{eV^2}]$	$ U_{e5} $	$\chi^2/{ m dof}$
$\overline{3+1}$	1.78	0.151			50.1/67
3+2	0.46	0.108	0.89	0.124	46.5/65

Table I: Best fit points for the 3+1 and 3+2 scenarios from reactor anti-neutrino data.

- Extend model and allow curvature parameter Ω_k and dark energy equation of state parameter w to vary
- \rightarrow w < -1 at more than 95% c.l.

[Kristiansen, Elgarøy (2011)]

Impact on cosmological model

- E.g., 1 massive + N massless species
- For eV-mass steriles: prefer additional massless species and high matter density

[JH, Hannestad, Raffelt, Wong (in preparation)]

- Launched 9th May 2009
- In orbit around Lagrange point L₂
- Measures CMB in 9 frequency channels 30-857 GHz
- ~ 5 arcmin resolution
 - → limited by cosmic variance up to multipoles of ~2000
- Expected sensitivity to $N_{\rm eff}$: $\sigma_{N_{\rm eff}} \approx 0.2$

[JH, Lesgourgues, Mangano (2007)]

- January: PLANCK early papers (mostly concerning instrument performance and foreground physics)
- Cosmology papers: early 2013

Conclusions

- Cosmological data show slight preference for additional relativistic degrees of freedom, such as sterile neutrinos
- 3+2 sterile neutrino interpretation of LSDN/MiniBooNE/ reactor data is problematic if implemented in naïve minimal cosmological model (too many for BBN, too heavy for CMB+LSS)
- Incomplete thermalisation or an extension of the cosmological model are required for compatibility
- Exciting results from PLANCK soon!

